Terry vs. Jade vs. Susan

Use the information in the table to create a distance-time graph. Be sure to include all parts of a graph including a key. Then answer the questions on the back.

Time (s)	Distance (m)		
	Terry	Jade	Susan
0	0	0	0
1	1.5	2.5	2
2	3	5	4
3	4.5	7	6
4	6	9	9
5	7.5	10	11
6	9	12	12.5
7	10.5	13.5	15
8	12	15	17.5
9	13.5	17	19
10	15	18	21

Terry vs. Jade vs. Susan

Susan 1. Who came in 1st place?

Jade 2. 2nd place?

Terry 3. 3rd place?

<u>The top line is the runner that was first.</u>4. By looking at the graph, how do you know which runner was first?

- <u>No</u> 5. Was this runner always in first place?
- <u>4 seconds</u> 6. At what time were 2 runners at the same distance?
- Terry 7. Which runner ran at a constant speed?

Terry's line is a straight diagonal line. 8. By looking at the graph, how do you know this?

<u>No</u> 9. Did any runner stop during the race?

It would be horizontal for the time period the runner had stopped. 10. What would a line for a person stopping look like?

Calculate the speed for each runner at 5 seconds. Round to the tenths place.

<u>1.5m/s</u> 11. Terry (7.5m / 5s=speed)

<u>2.0m/s</u> 12. Jade (10m / 5s=speed)

<u>2.2ms/</u> 13. Susan (**11m / 5s=speed**)

Calculate the average speed for each runner. Round to the tenths place. (Average speed is total distance traveled by total time.)

<u>1.5m/s</u> 14. Terry (**15m / 10s=speed**)

<u>1.8m/s</u> 15. Jade (**18m / 10s=speed**)

2.1m/s 16. Susan (**21m / 10s=speed**)