\qquad
\qquad Period \qquad Date \qquad

Motion and Forces Learning Targ Chapter 5, Sections 1-3

	Target	$\begin{array}{c}\text { Before } \\ \text { we } \\ \text { start }\end{array}$	$\begin{array}{c}\text { With } \\ \text { Help }\end{array}$	$\begin{array}{c}\text { On My } \\ \text { Own }\end{array}$	$\begin{array}{c}\text { Teach } \\ \text { It }\end{array}$
1. $\begin{array}{l}\text { I can calculate speed using the correct formula and give the } \\ \text { correct answer with correct units. }\end{array}$					
2. I can calculate velocity using the correct formula and give					
the correct answer with correct units and direction.					

Make and study flashcards for these vocabulary terms. If terms don't have page numbers, then they are highlighted in your text.

Reference point - the starting point you choose to describe the location, or position, of an object
Motion - the process of changing position
Speed - the distance an object moves in a unit of time
Average Speed - The total distance traveled divided by the total time
Velocity - the speed AND direction of a moving object
Distance/Time Graph - a graph that shows how distance and time are related
Force - a push or a pull on an object
Contact Force - a push or a pull one object applies to another object that is touching it
Noncontact Force - a force that one object applies to another object without touching it
Gravity - an attractive force that exists between all objects that have mass
Mass - the amount of matter in an object

Weight - the measure of the gravitational force acting on an object's mass
Friction - a contact force that resists the sliding motion of two surfaces that are touching
Air Resistance - the frictional force between air and objects moving through it
Net Force - When more than one force acts on an object, the forces combine and act as one force. The sum of all the forces acting on an object is net force.

Balanced Force - If the net force on an object is $\mathbf{0} \mathbf{N}$
Unbalanced Force - if the net force on an object is not 0 N
Simple Machine - has only one or two parts and is the simplest form of a device that can make work easier

Inclined Plane (ramp) - a flat, sloped surface

Targets 1

What is the formula to calculate speed $\underline{\text { Speed }=\text { distance } / \text { time }} \quad S=\underline{d}$
A cheetah ran 100 m in 20 seconds. What was its average speed? $\mathbf{1 0 0} \mathrm{m} / \mathbf{2 0} \mathbf{~ s e c}=\mathbf{5} \mathbf{~ m} / \mathrm{sec}$

Target 2

The family took a vacation and traveled from Florida to New York. They traveled 1000 miles. It took them two days to make the trip. What was the average velocity on their trip?

Formula $-V=$ speed (d / t) and direction
Equation - V = $\mathbf{1 0 0 0}$ miles/ 2 days and direction =

Answer - V = 500 miles/day, Northeast (NE)

Target 3

Plot the turtle's travel.

Time (sec)	Distance (cm)
0	0
3	30
6	60
9	90

Target 4

Which turtle traveled fastest? The green sea turtle traveled the fastest because it went the longest distance in 6 days.

What is the speed of each turtle at 4 days?
Green sea turtle $\quad \mathrm{s}=\mathrm{d} / \mathrm{t}=65 \mathrm{~km} / 4$ days $=16.25 \mathrm{~km} /$ day
Ridley's sea turtle $\quad \mathrm{s}=\mathrm{d} / \mathrm{t}=40 \mathrm{~km} / 4$ days $=10 \mathrm{~km} /$ day
What is the average speed of each turtle? Total distance/total time
Green sea turtle $95 \mathrm{~km} / 6$ days $=15.83 \mathrm{~km} /$ day
Ridley's sea turtle $60 \mathrm{~km} / 6$ days $=10 \mathrm{~km} /$ day

Target 5

$\underline{\text { Target } 6}$

Contact Force - a force that one object applies to another object that is touching it
Example: finger pushing a button, box scraping across a floor, ball when it hits a bat
Noncontact Force - a force that one object applies to another object without touching it
Example: static electricity, magnetism, gravity
$\underline{\text { Targets } 7 \text { and } 8}$
Balanced Force - If the net force on an object is $\mathbf{0} \mathbf{N}$. The object doesn't move.
Unbalanced Force - When the net force on an object is not 0 N . The object moves

Is the picture to the left demonstrating a balanced force or an unbalanced force?
Unbalanced force
Calculate the net force.

$$
\underline{-100 N(\text { down })+200 N(u p)=100 N(u p)}
$$

5N

Is the picture to the left demonstrating a balanced force or an unbalanced force?
Balanced force
Calculate the net force.
$5 \mathrm{~N}($ right $)+-5 \mathrm{~N}($ left $)=0 \mathrm{~N}$

Target 9

What are three ways a simple machine can make work easier?

1. increasing distance,
2. decreasing force, or
3. changing the direction

How do you find mechanical advantage of an inclined plane?

$$
\mathrm{MA}=\underline{\mathrm{L}} \mathrm{H}
$$

Which of these inclined planes has the greater mechanical advantage?
Why? The second inclined plane has the greater mechanical advantage because when you take the length and divide it by the height it is greater than the first one.

\qquad
Time

